14 research outputs found

    Towards a system for tracking drug delivery using frequency excited gold nanoparticles

    Get PDF
    Nanoparticle-based drugs are rapidly evolving to treat different conditions and have considerable potential. A new system based on the combination of electrical impedance tomography (EIT) imaging and a power amplifier with a RF coil has been developed to study the effect of gold nanoparticles (AuNPs) when excited in the MHz frequency range. We show that samples including AuNPs have a temperature increase of 1−1.5 °C due to the presence of RF excitation at 13.56 MHz which provides a higher rate of change for solutions without AuNPs. They also show more than a 50% increase in conductivity in difference imaging as the result of this excitation. The change for samples without AuNPs is 40%

    Towards a thoracic conductive phantom for EIT

    Get PDF
    Phantom experiments are a crucial step for testing new hardware or imaging algorithms for electrical impedance tomography (EIT) studies. However, constructing an accurate phantom for EIT research remains critical; some studies have attempted to model the skull and breasts, and even fewer, as yet, have considered the thorax. In this study, a critical comparison between the electrical properties (impedance) of three materials is undertaken: a polyurethane foam, a silicone mixture and a thermoplastic polyurethane filament. The latter was identified as the most promising material and adopted for the development of a flexible neonatal torso. The validation is performed by the EIT image reconstruction of the air filled cavities, which mimic the lung regions. The methodology is reproducible for the creation of any phantom that requires a slight flexibility

    Cross-sectional chest circumference and shape development in infants

    Get PDF
    Objective: This study investigates the development of the thoracic cross-section at the nipple line level during the early stages of life. Unlike the descriptive awareness regarding chest development course, there exist no quantitative references concerning shape, circumference and possible dependencies to age, gender or body weight. The proposed mathematical relations are expected to help create guidelines for more realistic modelling and potential detection of abnormalities. One potential application is lung electrical impedance tomography (EIT) monitoring where accurate chest models are crucial in both extracting reliable parameters for regional ventilation function and design of EIT belts. Despite their importance, such reference data is not readily available for the younger age range due to insufficient data amid the regulations of neonatal imaging. Results: Chest circumference shows the highest correlation to body weight following the relation fx=18.3735ln0.0012x+2.1010 where x is the body weight in grams and f(x) is the chest circumference in cm at the nipple line level. No statistically significant difference in chest circumference between genders was detected. However, the shape indicated signs of both age and gender dependencies with on average boys developing a more rectangular shape than girls from the age of 1 years and 9 months

    Thoracic shape changes in newborns due to their position

    Get PDF
    The highly compliant nature of the neonatal chest wall is known to clinicians. However, its morphological changes have never been characterized and are especially important for a customised monitoring of respiratory diseases. Here, we show that a device applied on newborns can trace their chest boundary without the use of radiation. Such technology, which is easy to sanitise between patients, works like a smart measurement tape drawing also a digital cross section of the chest. We also show that in neonates the supine position generates a significantly different cross section compared to the lateral ones. Lastly, an unprecedented comparison between a premature neonate and a child is reported

    DICOM for EIT

    Get PDF
    With EIT starting to be used in routine clinical practice [1], it important that the clinically relevant information is portable between hospital data management systems. DICOM formats are widely used clinically and cover many imaging modalities, though not specifically EIT. We describe how existing DICOM specifications, can be repurposed as an interim solution, and basis from which a consensus EIT DICOM ‘Supplement’ (an extension to the standard) can be writte

    Torso shape detection to improve lung monitoring

    Get PDF
    Newborns with lung immaturity often require continuous monitoring and treatment of their lung ventilation in intensive care units, especially if born preterm. Recent studies indicate that Electrical Impedance Tomography (EIT) is feasible in newborn
 infants and children, and can quantitatively identify changes in regional lung aeration and ventilation following alterations to respiratory conditions. Information on the patient-specic shape of the torso and its role in minimizing the artefacts in the
 reconstructed images can improve the accuracy of the clinical parameters obtained from EIT. Currently, only idealized models or those segmented from CT scans are usually adopted. This study presents and compares two methodologies that can
 detect the patient-specic torso shape by means of wearable devices based on: (1) previously reported bend sensor technology and (2) a novel approach based on the use of accelerometers. The reconstruction of different phantoms, taking into account
 anatomical asymmetries and different sizes, are produced for comparison. As a result, the accelerometers are more versatile than bend sensors, which cannot be used on bigger cross-sections. The computational study estimates the optimal number of
 accelerometers required in order to generate an image reconstruction comparable to the use of a CT scan as the forward model. Furthermore, since the patient position is crucial to monitoring lung ventilation, the orientation of the phantoms is automatically
 detected by the accelerometer-based method. [Abstract copyright: © 2018 Institute of Physics and Engineering in Medicine.

    Locating functionalized gold nanoparticles using electrical impedance tomography

    Get PDF
    Objective: An imaging device to locate functionalised nanoparticles, whereby therapeutic agents are transported from the site of administration specifically to diseased tissues, remains a challenge for pharmaceutical research. Here, we show a new method based on electrical impedance tomography (EIT) to provide images of the location of gold nanoparticles (GNPs) and the excitation of GNPs with radio frequencies (RF) to change impedance permitting an estimation of their location in cell models Methods: We have created an imaging system using quantum cluster GNPs as contrast agent, activated with RF fields to heat the functionalized GNPs, which causes a change in impedance in the surrounding region. This change is then identified with EIT. Results: Images of impedance changes of around 80±4% are obtained for a sample of citrate stabilized GNPs in a solution of phosphate-buffered saline. A second quantification was carried out using colorectal cancer cells incubated with culture media, and the internalization of GNPs into the colorectal cancer cells was undertaken to compare them with the EIT images. When the cells were incubated with functionalised GNPs, the change was more apparent, approximately 40±2%. This change was reflected in the EIT image as the cell area was more clearly identifiable from the rest of the area. Significance: EIT can be used as a new method to locate functionalized GNPs in human cells and help in the development of GNP-based drugs in humans to improve their efficacy in the future

    Optimized breath detection algorithm in electrical impedance tomography

    Get PDF
    This paper defines a method for optimizing the breath delineation algorithms used in Electrical Impedance Tomography (EIT). In lung EIT the identification of the breath phases is central for generating tidal impedance variation images, subsequent data analysis and clinical evaluation. The optimisation of these algorithms is particularly important in neonatal care since the existing breath detectors developed for adults may give insufficient reliability in neonates due to their very irregular breathing pattern. Our approach is generic in the sense that it relies on the definition of a gold standard and the associated definition of detector sensitivity and specificity, an optimisation criterion and a set of detector parameters to be investigated. The gold standard has been defined by 11 clinicians with previous experience with EIT and the performance of our approach is described and validated using a neonatal EIT dataset acquired within the EU-funded CRADL project. Three different algorithms are proposed that are improving the breath detector performance by adding conditions on 1) maximum tidal breath rate obtained from zero-crossings of the EIT breathing signal, 2) minimum tidal impedance amplitude and 3) minimum tidal breath rate obtained from Time-Frequency (TF) analysis. As a baseline the zero crossing algorithm has been used with some default parameters based on the Swisstom EIT device. Based on the gold standard, the most crucial parameters of the proposed algorithms are optimised by using a simple exhaustive search and a weighted metric defined in connection with the Receiver Operating Characterics (ROC). This provides a practical way to achieve any desirable trade-off between the sensitivity and the specificity of the detectors. [Abstract copyright: © 2018 Institute of Physics and Engineering in Medicine.

    Model selection based algorithm in neonatal Chest EIT

    Get PDF
    This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions
    corecore